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ABSTRACT 

Polarization smoothing (F’S) is the illumination of the target with two distinct and 
orthogonally polarized speckle patterns. Since these two polarizations do not interfere, the 
intensity patterns add incoherently and thus the contrast of the intensity nonuniformity can be 
reduced by a factor of fi in addition to any reduction achieved by temporal smoothing 
techniques. Smoothing by PS is completely effective on an instantaneous basis and is therefore 
of particular interest for the suppression of laser plasma instabilities, which have a very rapid 
response time. The various implementations of PS are considered and their impact, in 
conjunction with temporal smoothing methods, on the spatial spectrum of the target 
illumination is analyzed. 

Keywords: Beam smoothing, smoothing by spectral dispersion, inertial confinement fusion, 
laser plasma instabilities. 

1. INTRODUCTION 

Achievement of inertial confinement fusion with the upcoming megajoule-scale laser facilities 
using either the direct or indirect drive approaches requires a high degree of uniformity in the 
intense laser light focused onto the target. l/2 A number of approaches have been proposed for 
reducing the nonuniformities of the intensity at focu?. 3-13 A scheme that is well suited for 
solid-state lasers employs a random phase plate (REP) to homogenize the long scale structure 
of the focal spot, and then reduces the residual fine scale speckle within the focal envelope by 
the smoothing by spectral dispersion (SSD) method.4 With SSD and other temporal 
smoothing methods, from a time domain viewpoint, the speckle pattern in the focal plane 
changes at a rate determined by the total laser bandwidth, and thus the time-integrated 
intensity delivered to the target is smoothed. If this rate is sufficiently rapid in comparison to 
the response time of the target, then one expects the smoothing to be effective.2 However, this 
rate is bounded by practical limits on the maximum laser bandwidth, and therefore an 
alternative or complementary technique is desirable. 

The essential ingredient required to smooth the speckle structure in these techniques is the 
incoherent addition of distinct speckle patterns. In such a case, the contrast of the sum of the 
intensities of N distinct speckle patterns follows Gaussian statistics and will be reduced by a 
factor of 11 fi.12 S’ mce the intensities of two orthogonal polarizations add incoherently, PS 
can effectively double the number of speckle patterns which are integrated by any temporal 
method and thus reduce the contrast on target by an additional a. In addition, a major 
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distinction between PS and temporal smoothing methods is that PS acts to smooth the target 
illumination instantaneously. This is of particular importance when the target response time is 
very rapid, as is the case in the interaction of an intense laser beam propagating through the 
sub-critical plasma found in an indirect drive hohlraum. As a result, simulations have shown 
that PS is more effective than SSD for reducing filamentation in such a plasma and that the 
combination of PS and SSD results in even further reduction .7 Thus, I’S offers the promise of 
an improved safety margin for the goal of ignition in the upcoming megajoule Inertial 
Confinement Fusion (ICF) facilities. 

There are a few techniques which have been considered for implementing polarization 
smoothing (I’S). S-11 In the first scheme considered a birefringent wedge is used to create two 
orthogonally polarized beams with a selected angular deviation.8 In a second approach, the 
RPP is supplemented by an arrangement which scrambles the polarization in the near field.g- 
11 This scrambler may have periodic (i.e., e.g., a checkerboard) or arbitrary zones of 
orthogonal or varying polarization states. It is found that all these I’S techniques can reduce 
the nonuniformity contrast by a beyond that achieved by SSD. However, to achieve full 
effectiveness one must take care that the speckle patterns generated by PS are distinct and thus 
that the angular shifts associated with PS complement the angular shifts associated with SSD.5 
However, in spite of this requirement, a notable result is found in the case of the 2D SSD 
method5f6, where the time to reach the asymptotic smoothing limit is generally much longer 
than the time scale of significance to the direct drive target. At the early integration times (< 1 
ns) of importance to the target, I’S by a wedge or scrambler with divergence small compared 
to that of the 2D SSD divergence can still be nearly ideally effective. In addition to the 
reduction in the aggregate contrast, I’S can also modify the spatial frequency distribution of 
the speckle noise. The details of this distribution can have a large impact on ICF target 
performance. l/13 Thus, it is of importance to calculate the modification of the spatial 
frequency distribution by a given embodiment of PS. 

. 
2. BIREFRINGENT WEDGES AND SCRAMBLERS 

Birefringent Wedge 

“e” - wave 

----Liz 
l 

“0” -wave 

Figure 1: Schematic showing the use of a birefringent wedge to generate two shifted and 
orthogonally polarized speckle patterns for beam smoothing 

The use of a birefringent wedge is depicted in Fig. 1. The linearly polarized beam from the 
conversion crystals is incident with its polarization at 45” to ordinary and extraordinary axes 
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of a wedged birefringent material. The birefringence causes the polarizations to be refracted 
into two beams separated by an angle equal to 

A0=An.a (1) 
where a is the wedge angle and An is the birefringence ,between the ordinary and 
extraordinary polarizations. After passage through the RPP the two polarized beams form 
identical speckle patterns shifted by A.8. The two speckle intensity patterns will incoherently 
add and average to reduce the intensity contrast by 4 if the speckle patterns have equal 
powers and are shifted sufficiently such that they are distinct. If the powers in the two 
polarizations Pl and P2 are not equal, then the reduction in the intensity contrast is given by 

(PI + Pz)~ / (Pf + Pz) . One can show that the minimum angular shift required to decorrelate 
a speckle pattern is the half speckle width, L / D, where D is the square beam width14 (e.g. 
the National Ignition Facility (NIF) has D = 35 cm, il = 351 nm, and hence a / D = 1.0 prad). If 
one uses KDP as the birefringent material at maximum birefringence, An = 0.045 and the 
wedge angle required for the minimum 1.0 prad shift is 23 prad. 

In a second approach the polarization is scrambled in a near field plane adjacent to the REP. 
In this technique each polarization illuminates a distinct region of the RPP and thus two 
distinct and orthogonally polarized speckle patterns combine to illuminate the target. In this 
case the intensity contrast is again reduced by 6. The modification of the spatial spectrum 
by this technique is dependent on the type of pattern and the size of the zones used in the 
polarization scrambler and thus must be analyzed for each embodiment. 

3. SPATIAL SPECTRUM OF A STATIC SPECKLE PATTERN 

Before calculating the spatial spectra resulting from PS, recall that the spatial power spectral 
density of the speckle intensity from a uniformly illuminated (but randomly phased) square 
aperture of width D is given by14 

li(fx,fy)12 = [Mfx / frndA(fy / frnax~/fkl, + ~(fxyf,,]*J2 f (2) 
where f, and fr are spatial frequencies of the speckle in the far field, A(x) = 1 - 1x1 for [xl< 1 

andOfor x>l, fmax= D / nil , F is the final focal length, j( f,,f,), is the Fourier transform of 

the speckle intensity in the far field, I(XFF,YFF), and 7 = (Z(xFF,yFF)) denotes the average 
speckle intensity. The first term in Eq. (2) corresponds to the speckle noise and is referred to 
hereafter as the AC spatial power spectrum, and the second term is determined by the average 
intensity level. One can show that the AC spatial power spectrum is given by the 
autocorrelation of the near field intensity distribution, with the proper substitution of the far 
field spatial frequency variables:14 

(3) 
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where x and y in this equation refer to near field coordinates, 0 denotes correlation (i.e. 
a(x) 0 b(x) = Ju(x + s)b(s)ds), rect Cx) = 1 for 1x15 l/ 2 and 0 otherwise, and a square uniform 
illumination distribution has been assumed. For the rest of this analysis it will be assumed 
that all spatial frequencies are normalized such that f,,, = 1 so that one can write 

(4) 
From Parseval’s theorem, the square of the normalized variance is found to be simply related 
to the AC spatial power spectrum by the relation 

cr2 - ((I- f)2)/12 = JJli,,/2dfxdfy/T2 , (5) 
Thus, the power spectrum of Eq. (4) has been normalized such that its integral over 

normalized spatial frequency gives o2 = 1, as expected for a single speckle pattern. 

4. BIREFRINGENT WEDGE POLARIZATION SHIFTER 

The modification of the spatial power spectrum of the far field intensity pattern owing to the 
birefringent wedge can now be easily quantified. Let the speckle pattern owing to a single 
polarization be given by It(xFF,yFF). Assuming the wedge disperses the two polarizations by 
an angle A8 along the x direction, its effect is to generate two such patterns shifted along x the 
distance AxFF = At?. F. Since there is no interference between the orthogonal polarizations 
one can write the total intensity on the target as 

L~~FF~YFF) = ~(XFF~YFF) + ~(XFF + ~FF!YFF) = ~~~FF~YF~~*[~~~FF~+ ~(XFF - ax~F>]~ (6) 
where * denotes convolution (i.e. a(x)*b(x) 3 ja(x-s)b(s)ds). Thus one can now take the 
Fourier Transform to obtain the spatial power spectrum of the total intensity distribution 

(7) 
=NfxMfy) •cos2(~~~~.fx*fmax) 

where the single polarization result of Eq. (4) has been invoked. Thus, one has the intuitive 
result that the wedge modifies the spatial spectrum by imposing a sinusoidal ‘modulation 
along the shift direction with period 1 / AXFF. Hence, the total speckle noise power has been 
reduced by a factor 2 and the intensity contrast reduced by 2/2. 

5. REGULAR ‘CHECKERBOARD’ SCRAMBLER 

The spatial spectrum of speckle generated by each polarization of a scrambler can be found 
from a simple extension of Eq. (3). Consider the simple 1D case of a scrambler consisting of N 
uniform regions (i.e. stripes) of polarization separated by equal regions of orthogonal 
polarization. Following the same analysis leading to Eq. (4) one finds that the normalized 
spectrum is given by 

This result is shown (solid curve) in Fig. 2 for the case of N=8. One finds again that the 
scrambler reduces the total noise power (and hence also the variance 02) by a factor 2. This 
reduction is achieved owing to the lack of interference between orthogonally polarized 

4 



“Polarization Smoothing for the NIF...“, J. E. Rothenberg 

regions, which also leads to the periodic modulation of the spectrum shown. One finds this 
periodic modulation is very similar to that achieved using an appropriate birefringent wedge 
(see Eq. (7)). For this comparison the spectrum obtained using a birefringent wedge which 
produces an angular deviation between polarizations of 8. A I II is shown by the dotted curve 
in Fig. 2. One sees that the spectrum obtained with this birefringent wedge is nearly identical 
to that of the 1D polarization scrambler. This equivalence is conceptually clear once one 
realizes that the wedge, in effect, causes the near field polarization to alternate between 
orthogonal states, just like the scrambler. For a wedge of deviation iV. ;t I D, the polarization 
is orthogonal between near field positions separated by D / 2N, which is the same as the 
separation of the polarization zones in a scrambler with N pairs of alternating stripes. When 
compared to the static speckle spectrum (dashed curve in Fig. 2), the effect of either method is 
to reduce the speckle power spectrum by a factor of 2 when averaged over an interval larger 
than the spectral modulation period (in the case of Fig. 2, f,,, I 8). 

1 .o 

t 0.6 

2 
; 0.4 
I 

t 
g, 0.2 

u-l 

0.0 
-0.2 0.0 0.8 1.0 

Figure 2: Spatial spectral power density along the axis of smoothing generated by a 1D 
scrambler with 8 pairs of alternating stripes of orthogonal polarization (solid 
curve). The dotted curve is the restilt of polarization smoothing with a 
birefringent wedge with an angular deviation of 8.A / D. The dashed curve is 
the spectrum of a static speckle pattern with no polarization scrambler. 

This 1D result is easily extended to a regular two dimensional checkerboard polarization 
scrambler. For such a device with 2N x 2N square regions of polarization one finds 

IIAcrotal(fx,fy)/2 if2 = Nf,.2WVfy-W 

*g;i;-2, ( 
Am even 

[ N-jm~/2)(N-~z~/2)~(1/4)~~,,o~~]~(fn+zI2N)~(fy+m/2N)/N~ (9) 

where the Kronecker function 61 m odd is unity when I and m are both odd and zero 
otherwise. 
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6. POLARIZATION SMOOTHING USING STRESS BIREFRINGENCE 

Because of the expense and increased nonlinear effects introduced by an additional KDP optic, 
it is desirable to find a more practical I’S implementation. One such possibility involves 
imposing stress to induce birefringence in an already existing optic proximal to the final focus 

lens. Let the near field intensity given by INF(x,y) = lE~F(x,y)f be incident upon a 
birefringent optic of varying retardance $(x,y). Assume the birefringent principal axes of this 
optic are at 45” to the input field polarization so that the input power is equally divided 
between the two waves. With the birefringent axes of the optic defined to be along x and y 
one can write the transmitted field 

6 (~&d-&y) + ~~~F(X,y)exp[~~tx,y)l)/~. (10) 
After transmission through an RPP, the spatial spectrum of far field intensity of the combined 
polarizations can be found using an analysis similar to that used for Eqs. (2) and (3),14 

liActota~(fxj2 jr2 =(INF(X,Y)~I~F(X,Y)~~:~~ x 

where %i(...} refers to the real part. One also finds that the variance of the superposition of the 
two polarized speckle patterns is given by 

0’ = (1 + [Jj h&% r> exp[@(x, y)ld+r /Ia h(n7y)~&f)/2 . (12) 
Stress birefringence can be described as a differential index of refraction along the principal 
axes of the stress tensor An = B(o, - o,,), where the photoelastic constant is given by15 

B E 3.5 x lo-l2 m2 / N (= n3(qll - 412) I 2) for fused silica,16 and o, and crrr are the principal 
stresses. Since the birefringence depends on a stress differential, it is convenient to define the 
shear stress oxy = (ok - c$) / 2 in terms of the principle stresses crL and c$ found in a 
coordinate system rotated 45”. Thus the birefringent phase retardance, in waves, along the 45” 
diagonals of an optic can be written 

Acp/2n=An*z/a=2B~xy~z/a=(o,y/730PSI)-z, (13) 
where the stress is given in units of PSI, ;1 is assumed to be 351 nm, and z is the plate 
thickness in cm. An example of an implementation of imposed stress birefringence on a 
square fused silica plate is depicted in Fig. 3, which also shows the induced shear stress and 
the resulting intensity of the transmitted light with polarization rotated orthogonal to the 
(vertical) input. 
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Figure 3: Schematic of the stress loading scheme (left) considered for generating highly 
nonuniform stress birefringence in a 42 x 42 x 1 cm fused silica plate bonded to 8 
metal tabs (2 on each edge). Each tab is compressively loaded by three forces as 
shown. Shown inside the loading schematic is the calculated shear stress pattern for 
a load at each point of 2000 lbs. Right: transmission in the polarization orthogonal 
to the input. Fraction of the total power in the orthogonal polarization is 45 %. 

0 500 1000 1500 2000 
Load applied per point (Ibs) 

-1.0 -0.5 
Spatial FrequOi(lncy / (opi:A) 

1 .o 

Figure 4: Left: calculated effective number of speckle patterns ( NQ = oV2) generated by PS of 
a birefringent plate versus the load at each point in the design of Fig. 3. Right: 
spatial spectral power density along the f,-gxis of the speckle pattern generated 
when using the scrambler of Fig. 3 with a load at each point of 2000 lbs. The dashed 
curve is the spectrum of a static speckle pattern with no polarization scrambler. 
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In Fig. 4 the effective number of speckle patterns ( Nefs E oB2) calculated with PS using the 
above scheme of stress birefringence is plotted versus the loading force at each point in the 

design of Fig. 3. A large load (2000 lbs / point) is required to get the full reduction in o2 with 
PS of this design because of the sizable central region with low stress. The spatial spectrum 
was calculated along the f, axis for a load at each point of 2000 lbs and is also shown in Fig. 4. 
The poor smoothing for fx < 0.2 also results from the lack of I’S in the central low stress 
region. Stress birefringence can also be imposed on an optic in a very uniform fashion and 
used to generate quarter- or half-wave plates in separate optics (e.g. in each of the four 
Beamiets which make up a group focused through a single port on the NIF) to effectively 
create a piecemeal 2x2 checkerboard scrambler. 

7. COMBINING SSD AND POLARIZATION SMOOTHING 

An important question to consider is the effect of the scrambler or birefringent wedge when 
used in conjunction with SSD. SSD preferentially reduces the speckle noise power at higher 
spatial frequency and leaves a small range of low spatial frequencies unsmoothed. This 
range of unsmoothed frequencies is a result of the finite divergence of the SSD method, i.e. 
since the speckle motion induced by SSD is of limited extent one can not smooth spatial 
structure larger than this scale. Therefore it may be important in designing a polarization 
scrambler to ensure that it smoothes the low frequency spatial structure which has not been 
effectively smoothed by SSD. 

An example of this consideration is shown in the calculations of Fig. 5, where the asymptotic 
spatial spectra of SSD without (solid curves) and with (dotted curves) PS by a birefringent 
wedge are compared. SSD in this calculation is assumed to have a modulation depth of 4 and 
thus a divergence of - +_4. il I D, and the corresponding first nodes of the SSD spatial 
spectrum are seen at - fO.l f,,, . In Fig. 5 (a) the angular deviation induced by the wedge 
between the two polarizations is taken to be 8. il / D along the dispersion direction, in which 
case the resultant periodic modulation of the spectrum (see Eq. (7)) has nodes at &l/16,3/16, 
5/16..:f,,,. Thus, one sees that the central residual power lobe of SSD is considerably 
narrowed by the addition of I’S (dotted curve). In Fig. 5 (b), however, the wedge deviation is 
assumed to be only 4. a I D and thus the corresponding nodes are at +1/8,3/S, 5/8, . . . ef,,, . 
As is seen in Fig. 5 (b) the central lobe is not narrowed very much. In these examples the 

reduction in the variance cr2 owing to I’S is 1.83 and 1.52 for Figs. 5 (a) and (b), respectively. 
In contrast, if the wedge deviation is larger than 10. il I D along the dispersion direction, or at 

least a/ D orthogonal to the dispersion direction, then the reduction in o2 is found to be the 
maximum factor of 2. 
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Figure 5: Spatia 1 - _ spectral power density along the dispersion direction of SSD with 
modulation depth of 4 without PS (solid curves) and with PS by a birefringent 
wedge (dotted curves) of deviation (a) 8. il / D and (b) 4. il / D. 

As a second example consider the effect of F’S when combined with 2D SSD. The two 
modulation frequencies are taken to be 7 and 3 GHz, and modulation depth of 20 is assumed 
for each modulator. Each modulator is assumed to be critically dispersed (one color cycle - so 
that adjacent sidebands are separated in the far field by the angle 3L / D) with the 7 and 3 GHz 
modulators dispersed along the x and y axes, respectively. The total UV bandwidth is then - 
400 GHz, and the divergence is - 40. il / D in each direction. Based on the discussion of 1D 
SSD one would think that for PS deviation << 40. il / D the effectiveness of PS when combined 
with 2D SSD would be poor. However, because the asymptotic level of 2D SSD is not reached 
until a few ns, PS by a wedge at small integration times can be still quite effective even for 
very small angular shifts. More generally, since both 1D and 2D SSD smooth high spatial 
frequencies more rapidly than low ones, 13 PS by a wedge with a small shift (which provides 
very little smoothing at low spatial frequency) will offer little enhancement of SSD at long 
integration times. However, initially the aggregate variance is dominated by high spatial 
frequency components and thus PS is nearly ideally effective. In contrast, PS with deviation of 
40. il / D smoothes over the entire range of relevant spatial frequencies, even in the asymptotic 

limit. This behavior is seen in Fig. 6 which shows the reduction in the aggregate variance o2 
by a wedge with y-deviations of 1,2,5, and 4O.L / D versus integration time of smoothing by 
2D SSD. Thus, in the typical direct-drive ICF target physics scenario, where smoothing is most 
important over an integration time up to -1 ns, one finds that the wedge deviation required 
for effective polarization smoothing is much less than the full 2D SSD divergence. It should be 
noted however, that even though at small integration times a small wedge shift may yield 
effective aggregate smoothing (i.e. the total contrast of the illumination nonuniformity is 
reduced by 2/2), low spatial frequencies will not be smoothed effectively, which may be of 
significance to the direct drive target.1 

9 
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Fig. 6: Reduction in o2 versus integration time of 2D SSD (modulation depth 20, frequencies 
of 3 and 7 GHz in the x and y directions) by PS of a birefringent wedge with y- 
deviations of 1 (dotted), 2. (solid), 5 (dotted), and 40 -it / D (solid curve) as indicated. 

8. CONCLUSIONS 

It has been shown that PS by either a birefringent wedge or a scrambler can reduce the 
contrast of speckled target illumination by a factor of & beyond that achieved by SSD. The 
spatial spectrum resulting from PS is dependent on the spatial scale of the polarization change 
in the near field before focus -- smoothing of the lowest spatial frequencies thus requires 
change of polarization on a small scale in the near field. Equivalently this can be accomplished 
with a birefringent wedge of large deviation. To insure the full effectiveness of PS in the 
asymptotic limit, its divergence must exceed (or be orthogonal to) the divergence of the SSD. 
However, for 2D SSD, at the small integration times of significance to the target, a much 
smaller PS divergence can be nearly fully effective in reducing the aggregate contrast. 
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